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This article presents the exact potential corresponding to confining fields inside

a linear rf quadrupole particle trap of finite length. The analytic expression for

tile trapping potential is derived by introducing a linear trap employing a relatively
simple cylindrical geometry and solving Laplace's equation for the trap electrodes.

Tile finite length of linear traps results in field distortion near tile trap ends. An

exact analytic determination of the fields is useful because tile profile of tile trapped

ion cloud is highly dependent on the fields confining it. It is shown that near the
ends of the trap, the effective potential arising from the rf fields acts to propel

particles out of tile trap, and further, that the addition of a dc bias generates an

inhomogeneous field ill the trap that influences tile particles both perpendicularly

to and along tile trap's long axis.

I. Introduction

Trapped 199Iig+ ion standards are presently the most
stable frequency standard developed for averaging times

> 104 seconds. Trapped ions can be stored for long pe-

riods, essentially isolated from the outside environment.

This arrangement serves to reduce the perturbation to the

ions' atomic-energy levels and hence minimize frequency
fluctuation.

Currently, tile Time and Frequency Systems Research

Group is developing a prototype linear ion trap consisting

of four parallel cylindrical rod electrodes enclosed between

two end electrodes (Fig. 1). This trap is preferable over the
conventional spherical trap in frequency-standard applica-

tions because of its 20-times-larger ion storage capacity.

The number of ions determines an important trade-off pa-

rameter between tile signal-to-noise ratio and tile second-

order Doppler shift arising from the motion of the ions
caused by the trapping field. The geometry of the linear

trap improves clock peformance by allowing an increase

of the number of trapped ions without degradation of the

frequency stability [1].

Particle motion is directly affected by the electric fields

generated within the trap. A time-varying quadrupole

electric field is produced in the linear rf trap by an ac volt-

age applied to the four rods such that any rod's nearest

neighbor has the opposite polarity. The rf field provides

tile trapping force necessary to confine particles in the ra-

dial direction (see Fig. 1). In order to prevent trapped par-
ticles from escaping out the ends of the trap, adc voltage is

applied to the two "endcaps," producing an exponentially
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decaying field directed inward along the the axis of cylin-

drical symmetry of the trap (i.e, along the z axis). The

linear trap is also capable of containing larger macropar-

ticles (such as alumina or other substances) [21. In this
case, however, static electric fields must be incorporated

in addition to the rf and endcap fields to offset gravita-
tional forces on the macroparticles, which are comparable

to the trapping forces. If the trap is oriented such that
the trap axis is horizontal with the rods at the corners of

a square when viewed down the trap axis, adc voltage

can be applied to the top two rods of the quadrupole to

provide this offset.

RF fields in the radial direction of a linear trap have

been analyzed extensively by assuming the trap to be in-

finitely long [3]. In actuality, however, the traps are of

finite length, and thus both static and time-varying fields

emanating from the rod electrodes will be directed lon-

gitudinally along the axis of the trap, as well as radially.

Near the ends of the trap, field distortion occurs. In an ion
trap, this can subsequently affect the shape of the trapped

ion cloud and thus ion motion. To optimize clock per-

formance, an exact determination of the fields generated

within the trap, including the "end effects," is necessary.
This then allows for the calculation of the surface shape of

the ion plasma contained within the trap. In this article,

an analytic model is developed for one implementation of

a linear trap to determine static fields produced by the

end electrodes and time-varying electric fields everywhere

inside a finite-length linear trap with cylindrical geome-
try. The model consists of a hollow cylinder, partitioned

lengthwise into four sections (analogous to the four rods)

and two endcaps. The simple geometry of the cylinder
allows the calculation of the fields within the cylinder ac-

curately (Fig. 2).

Although consideration of adc offset to counterbalance

gravitational forces is unnecessary when modeling a linear

trap designed for the storage of ions, it cannot be neglected

when discussing a trap that contains macroparticles. The
primary purpose of applying the de offset is to counter-

balance gravitational forces on macroparticles, tIowever,
if the bias is added to the rod electrodes, electric fields

will be additionally generated along the axis of the trap in
a manner that acts to longitudinally localize the particles
in the trap center or to propel them out the ends of the

trap, depending on the polarity of the dc offset. A second

model is presented in this article to determine the effects of

the fields generated by adc voltage applied to two rods in
the linear trap. Because the focus of this model is solely

to demonstrate the effects of applying adc offset to the

trap, the contribution from the rf trapping fields and the

fields generated by the end electrodes are neglected, al-

though the complete determination of the potential inside

a cylindrical macroparticle trap is possible by combining

the potentials derived from the two models.

First presented is the conventional trapping theory

for rf quadrupoles previously developed in the literature.

Then, the potential everywhere inside a linear ion trap

with cylindrical geometry is derived by modeling the trap
after a four-sectioned hollow cylinder of finite length en-

closed by two endcaps. In Section IV, the potential is
determined inside a second model that consists of a hol-

low cylinder split along its length into two halves. The
top half is at a voltage Vo and the bottom half and end-

caps are grounded. This model accounts for the effect of

a de-offset potential applied to the rod electrodes in a lin-

ear macroparticle trap. The conclusion summarizes the
results of the two models.

II. Trapping Theory

The linear trap typically employs two dc-biased "end-

cap" electrodes t.o confine the particles longitudinally, and

four rods that produce a time-varying electric field to con-
tain them in the transverse or radial direction. The volt-

age applied to the rods is such that at a given instant, any

pair of adjacent rods always has opposite polarity (Fig. 3).

The potential inside the trap near the central axis (i.e.,

x,y << R) is given by

v(_, v) = [v°(*2 - u2) cos(_t)]
2R 2 (I)

where x and y denote tile particle's position in the radial

direction, R represents the distance between the central

axis and the surface of the rods, and 9t is the driving fre-

quency. The resultant time-varying electric fields produce
a trapping force that increases linearly in the radial direc-

tion. A single charged particle within the trapping region
will be subjected to a time-averaged force towards the cen-

tral axis of the trap (r = V_ + y2 = 0) where tile field

intensity is a minimum. A nonzero time-averaged restoring
force for a single particle is derivable from a pseudopoten-

tial, the effective potential existing in an inhomogeneous
electric rf field [4]

¢(*, v) - q[Eo(x, v) _]
4raft2 (2)

In tile case of an infinitely long linear trap, Eq. (2) modifies
to

g,(x, y) --= 4m_2R4 (x 2 + y2) (3)
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where q is the charge on tile particle and x and y are tile
particle's position in the radial direction averaged over one

period T = (2,x/ft). The force generated from this pseu-

dopotential produces particle dynamics that superimpose

a slower oscillating motion characterized by frequency w,
upon a faster micromotion due to the driving frequency fl.

Stable confinement of the particles occurs when w << fl.
Tile frequency co for radial particle oscillation can be de-

rived from Eq. (3) as

w 2 = q2Vo 2
2mQ2i_ 4 (4)

Although the particle is in dynamic equilibrium along the
radial direction, it is still free to traverse the longitudinal

(z) axis. If there is no constraining force along this axis

and the trap contains more than one particle, the coulomb

repulsion between the particles tends to propel them out

tile ends of the trap. To counterbalance these forces, de-

biased electrodes are incorporated at either end of the trap

in both ion and macroparticle systems.

III. Analytical Model for the Potential Inside
a Linear Trap

The complete eh:ctric field inside the linear iota trap

consists of a static field arising fi'om applied voltage on

the endcaps and the time-varying fields resulting from a

voltage arrangement on the trap rods. Unfortunately, tim
analytic determination of the net electric field for a finite-

length four-rod linear trap is formidable and, as yet, only

an approxinmtion of the field exists by considering the trap
to be infinitely long. Tiffs approximation neglects tim ef-

fect trap ends have on the generated rf fields that influence

tile dynamics of trapped ions. Rather than neglecting the
end effects, in the model described here the fields generated

by the four-rod geometry are approximated by employing a

hollow cylinder partitioned into four sections with endcaps

at either end (Fig. 2). While providing a rough approxima-
tion to tile four-rod trap, the model primarily represents a

new linear-trap geometry that can be accurately modeled

to determine tile exact confining field, including any signif-
icant end effects. An exact analytic deter/nination of the

fields is highly useful since the shape of the trapped ion

cloud depends strongly on the fields surrounding it. Be-

cause the ions contribute significantly to the electric field
within the trap, only certain density profiles are accept-

able. With a complete picture of the fields generated by

the cylindrical shell and endcaps, Poisson's equation can

be solved numerically to investigate the shape of the ion

plasma. By virtue of its design, the cylindrical geometry

also conveniently provides shielding against charge buildup

that might occur in regions external to the trap such as

lenses or mirrors. The pseudopotential arising from tile
rf fields and the potential generated from the endcaps are

solved separately. Superimposing these two solutions pro-
duces the net potential everywhere inside the cylindrical

trap.

The pseudopotential is determined by employing the

four-sectored cylindrical model in Fig. 2 with grounded

endcaps and a surface voltage Vo applied such that I7o(0) =

-Vo(O + _r/2). This voltage arrangement represents the

applied voltage on the four-rod quadrupole at a given in-

stant. Starting with Laplace's equation in cylind,'ical coor-
dinates, a general solution of the product form is assumed:

¢,(,., 0, :) = _(1.)Q(0)z(:) (5)

It can be shown that for this type of geometry [5]

qS(r, 0, z) = [A cos(,,/0) + B sin(,,,O)][CI,,,(kr)

+ DI, i,,,(kr)][Esin(kz) + Fcos(kz)] (6)

where Im and Km are the modified Bessel functions. The

remaining coetticients are constants to be determined.

With the requirements that F,D = 0 and

k,, = T (7)

the equation for q_ takes on the modified general form

0(3 CO

•/,.,0,:/:E ......
_':,1= 0 n=O

+ B .... sin(mO)){I\ ,,,\ L ))(n"rr'l

. {n,-rz'_
(8)

The asymmetric voltage is applied to tim four cylinder

sections on the cylindrical surface (r = R) such that:

Vo, -,'r<0< =@}

-Vo, _ < 0 < 0
V(0, z) =

Vo, 0<0<_

-Vo, _<0<,.

(9)

TILe potential ou the surface is thus given as
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V(O, z) = Amn cos(mO)

rn=O n=O

('m
(10)

with the coemcients

ATrt_ ----- 0

Substituting these constants back into Eq. (8), and mul-

tiplying (I) by cos(fit) to take into account that it varies

with a frequency _, the time-varying potential due to the

surface voltage is determined:

× sin(m0)sin (n-Lz-)] cos(gt ) (12)

where m = 2,6,10,... and n = 1,3,5,.... Providing the

secular frequency is much less than the frequency of mi-

cromotion (w << _), the macromotion of the particle can

be described by the time-independent pseudopotential dis-

cussed in Section II

¢- (13)

and incorporating Eq. (12),

q (14)
O- 4mf_ 2

where

A(,', O,z) -

(n_z]]

x sin(mO)cos\ L /J

7'7r2 n Im (_)nxR

x cos(toO) sin nTrz(-z-)]

ril n

lm_l(-'_r) + Im+l (-_ "E-)

X

Im ( ",r I_
\ L !

(nTrz_] (15)
x sin(m0)sin\ L ]]

The inhomogeneons electric field arising from this effective

potential produces a net force on a single particle that,

averaged over one period of tim micromotion (T = 12/27r),

is directed towards r = 0 in the radial direction and out the

ends oft he trap in the z direction. Tile z dependence of the

pseudopotential is demonstrated by, Figs. 4(a) and 4(b),

which represent examples of ¢(z) at two different positions

of 0. In both of the examples, r = R/8 with V_¢ = 200 V,

9t/2_r =60 tlz, R= 0.008m, and L = 0.06 m. A 5lma-

diameter alumina particle with an approximate positive

charge-to-m_ss ratio of 0.0053 C/kg is used to evaluate

Eq. (14).

The magnitude of _(0) for fixed values of r and z is

sinusoidal and oscillates from a maxinmm in regions near

the boundaries of each of the four sections of the cylinder

(0 = 0, 7r/2, 7r, 2rr) to a minimum along the centers of the

cylinder sections (0 = 7r/4, 37r/4, 57r/4, 7_r/4) (Fig. 5). It is

interesting to note that the pseudopotential in the cylin-

drical model indicates an electric field in 0 that is actually

45 deg out of phase with the electric field generated in the

linear four-rod trap. In the latter case, the pseudopoten-

tial is a maximum in the vicinity of tile rods (located at

0 = 7r/4, 37r/4, 5_/4,77r/4) and a minimum between them.

This discrepancy arises because the spatial separation of

the rods results in weaker fields between any two rods in

contrast to the fiekls between the cylinder sections whose

boundaries meet and give rise to large electric fiehls. The

fact that the pseudopotential is a minimum at the section

centers in the cylindrical linear trap suggests that small

viewing holes may be added in this vicinity without sig-

nificant disturbance of the fields within.

In order to obtain tile total potential inside the cylin-

der, the potential arising fi'om the endcaps must be deter-

mined and superimposed on the pseudopotential. This is

accomplished by solving Laplace's equation for a cylinder
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with a grounded surface and endcaps held at a constant

voltage lie. Tile resulting potential inside the cylinder for

this configuration is

(16)

where J0 and J1 are the zeroth and first Bessel func-

tions, respectively, and P,n is the ruth root of J0. Adding

Eqs. (14) and (16) determines the net potential inside a
finite cylinder of length L and radius R

%_e(r, 0, z) =*b+Oe (17)

The net potential can be interpreted geometrically by

observing that it is composed of the pseudopotential whose
curve, as demonstrated in Figs. 4(a) and 4(b), rises for
fixed values of r and 0 from a minimum at z = 0 and

z = L to a maxinmm in the center of the trap, and an

"endcap" potential that varies from a constant t_ on the
ends to a minimum in the center of the trap (Fig. 6). By

controlling the amount of voltage applied to the endcaps,

qs,_t can be adjusted. The model suggests that there is an

optinmm endeap voltage that maximizes the continuity of

the net potential in the z direction. Figure 7 demonstrates

the z dependence of _,_t when • is greater than ¢.

IV. Analytical Model for a DC Field

Perpendicular to the Cylindrical Axis

Ill a horizontal configuration, the introduction of a

dc voltage on the top two rods of the linear quadrupole

trap generally serves to counter the forces of gravity on
macroparticles. Because the rods are of finite length, how-

ever, the electric field is not directed exclusively in tile ra-
dial direction as in the case of infinite rod length. Instead,
a distortion of the field lines occurs at the ends of the rods,

giving rise to a field component in the longitudinal direc-
tion. The effects on particle dynamics of an asymnaetrie

dc bias may be understood by again considering the four-

rod quadrupole to be a hollow cylindrical trap split into
two sections; the z axis is coincident with the axis of the

linear quadrupole trap. Figure 8 depicts the cylindrical
model with radius R and length L. To model the effects

of the offset in the trap, a dc voltage is applied on the top

half of tile cylinder and the bottom half and endcaps are

grounded. This potential call be added to _,_¢t developed

in the previous section to provide a full solution of the po-
tential inside a linear trap when a dc bias is added. The

potential due to the dc offset is solved in a similar manner

as the problem in Section II, and the results are

n odd _ L !

+ m_ I,. _--E-/
m odd

Figure 9 represents a computer evaluation for this func-
tion of the first 22 values of m and 7_, respectively. Near

tile central axis of the trap (r = 0), the function varies

smoothly, falling off to zero at z = 0 and z = L. The
resultant electric field at r = 0 is

00(r, 0, z)
OZ

- E_

L E cos k-_---/ Io
n odd

(19)

The surface voltage Vo is inherently positive in Eq. (19).

By referring to Figs. 10(a) and (b), it is evident that if a

single negatively charged particle is subjected to this field,
the force on that particle will be directed inward towards

the center of the trap (z = L/2), growing abruptly from
zero to a maximum as it approaches either end. The poten-

tial inside the trap could have been determined similarly

by solving Laplace's equation for a voltage Vo applied to
the bottom half of the cylinder instead of the top. In this

ease, if the particle had been taken to be positive, the net
effect would still support the particle against gravity, but

would accelerate the particle out one of the ends of the

cylinder.

The analogy to tile linear cylindrical trap is apparent.
In order to counterbalance the gravitational effects on the

particle, the dc voltage applied to the top rods must be of

the opposite sign to that of the particle. But as demon-
strated above, this condition inherently gives rise to an

inhomogeneous force on the particle that is directed longi-

tudinally inward, towards the center of the trap. Likewise,

a gravitational offset can also be accomplished by apply-

ing a voltage to the bottom two trap rods that is the same

polarity as the particle. This, however, additionally pro-
duces an electric field that acts to force the particle out

the ends of the trap.

Farther out along the radial direction, the potential in-

creases ill magnitude and tile function assumes a more

rectangular shape. In the limit at r = R, I_ spans the
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rectangular shape. In tile limit at r = R, Vo spans tile
length of the cylinder and the function discontinuously
jumps to 0 at either end. The electric field evaluated on
tile surface is

04(0,:)
-- Ez --

Oz L cos\ L /
n odd

( 4 _ 1 (__))]x 1+- --sin (20)
71" 1/1

m odd

where 0 is again taken to be a constant at _r/2. The model
indicates that the electric field in the z direction towards

the center of the trap depends on the radial position of the

particle. This dependence is demonstrated by comparing
Figs. 10(a) and (b).

The cylindrical model approximates tile field accurately

and yields insight into the influences on the particle in the

longitudinal direction from the gravitational offset. For

the case of many trapped particles, the model suggests
that in some instances a bias on the end electrodes is not

really necessary to counterbalance coulomb repulsion be-
tween particles, if adc offset on the top rods is added. In
this case, the particles will distribute themselves in such

a manner as to create an equilibrium situation, balancing
the coulomb forces and the force arising fronl the applied
voltage.

V. Conclusion

This article has presented a model for the rf fields in a

linear trap by considering a four-sector cylindrical geome-

try. This geometry approximates a finite linear trap with

rod electrodes. It also represents a new configuration for
an ion trap that is amenable to analytic determination of

the confining fields. Using tile model for the finite-length

linear cylindrical trap, it was shown that confining fields
have a longitudinal component as well as a radial compo-

nent. The z component of the rf electric field produces

an extra term in the pseudopotential not present in the
ideal, infinitely long trap. The details of the end effects

are important in ion confinement. The analytic model in-

dicates that the pseudopotential arising from the rf fields

gives rise to a time-averaged force towards the center of
the trap in the radial direction and away from the center

in the z direction. This latter effect, combined with the

ions' own coulomb interaction, will accelerate the parti-

cles out of the trap if biased endcaps are not present. Tile

density of the ion cloud can be determined numerically by

solving Poisson's equation for the fields generated by the
trap electrodes encompassing the ion plasma. Future re-

search is planned for the evaluation of the plasma shape
in a linear cylindrical trap.

When a dc bias potential is applied to the trap elec-

trodes (for example, in the case of a macroparticle trap
where the gravitational force is counterbalanced with a de

offset), an electric field is generated in both the radial and

longitudinal directions. An analytic model has been de-

veloped that utilizes a cylindrical geometry to determiue

these fields. According to the model, a particle of the op-

posite sign to an applied dc voltage on the upper electrodes

will feel an inwardly directed force along the z axis in addi-

tion to the transverse force. On the other hand, a particle

with tile same polarity as an applied de voltage on the
lower electrodes will be forced upwards in the transverse

direction and towards the trap ends in the longitudinal
direction.
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Fig. 1. Linear four-rod quadrupole trap.

(a)

Fig. 2. Linear four-sectored qusdrupole trap: (a) three-dimen-

sional view of the trap with endcaps; and (b) orientation of the

cylinder sections as viewed down the z axis. Section boundaries

meet at 0 ---- O, 7r/2, 71",and 37r/2.

Fig. 3. Four-rod quadrupole. The voltage on each rod's nearest

neighbor has opposite polarity.
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Fig. 4. The pseudopotentlal _(z) at two positions o! O: (a) z de-

pendence o! _(r,O,z) evaluated at r = R/8 and 0 = 0 tor a single

alumina particle with elm = 0.0053 CJkg and trapping parameters

Vac = 200 V and _/2_r ---- 60 Hz; and (b) _,(r,_,z) evaluated at r = t I [
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Fig. 6. The longitudinal (z) dependence of _e (r,z) evaluated at
r= 0 with end electrode voltage VI= 20 V.
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Fig. 7. The longitudinal (z) dependence of _'net (r,O,z) evaluated

at r = R/8 and 0 = 7r/4 for a single alumina particle with e/m =

0.0053 C/kg and trapping parameters Vac = 200 V, V 1 = 2 V, and
_/2,"r = 60 Hz.

vo

Fig. 8. Cylindrical model for a linear particle trap with a dc bias

added to the top two rods of the trap.
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Fig. 9. The potential _(r,O,z) due to a dc offset inside the cylin-

drical model evaluated at 0 ---- _//2 with an applied voltage Vo ----
20 V.
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Fig. 10. The electric field E(z) within the cylindrical model: (a) at

a fixed r= 0, 0 ---- ,"r/2, and Vo-= 20 V; and (b) at a fixed r---- 3R/4,
0 ---- ;r/2, and Vo ---- 20 V.
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